HUNTERSITY OF THE

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Number Theory and Cryptography [S1MwT1>E-TLiEK]

Course

Field of study Year/Semester

Mathematics in Technology 3/5

Area of study (specialization) Profile of study

general academic

Level of study Course offered in

first-cycle polish

Form of study Requirements

full-time elective

Number of hours

Lecture Laboratory classes Other (e.g. online)

30 0

Tutorials Projects/seminars

15 0

Number of credit points

4,00

Coordinators Lecturers

dr Anna Iwaszkiewicz-Rudoszańska anna.iwaszkiewicz-rudoszanska@put.poznan.pl

Prerequisites

Basic knowledge of algebra and discrete mathematics. Basic knowledge of algebra and discrete mathematics. Understanding the necessity of expanding own competences.

Course objective

The course is intended to present the basic schemes of public key cryptography and results in number theory necessary to understand them.

Course-related learning outcomes

Knowledge:

- 1. Formulates definitions and theorems from number theory used in discussed cryptographic algorithms.
- 2. Explaines basic concepts of public key cryptography and give an account of different cryptosystems.

Skills:

- 1. Performs calculations necessary for encryption and decryption in discussed cryptographic systems.
- 2 Uses theorems from number theory and algebra in the analysis of cryptographic systems. Justifies the

correctness of selected cryptographic systems.

Social competences:

- 1. Knows the limits of her/his own knowledge and understands the need for further education.
- 2. Is aware of the limitations of contemporary cryptography.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Learning outcomes presented above are verified as follows:

Lecture: Written test at the end of semester. Tutorials: Three short tests during semester.

Programme content

Lecture: Congruences (Chinese Remainder Theorem, Euler's function, Euler's Theorem). Arithmetic functions. Quadratic residues, Legendre and Jacobi symbols, Gauss" Law of Reciprocity. Primality testing. Discrete logarithm problem. Diffie-Hellman key exchange systems. Public key cryptography. RSA, Rabin's and ElGamal encryption schemes. Signature schemes. Blind signatures. Elliptic Curves. Elliptic curve cryptosystems. Complexity of selected algorithms.

Tutorials: Congruences (Chinese Remainder Theorem. Euler's function, Euler's Theorem). Quadratic residues, Gauss" Law of Reciprocity. Arithmetic in finite fields. RSA, Rabin's and ElGamal encryption schemes. Signature schemes. Elliptic Curves.

Teaching methods

Lectures: lecture with presentation supplemented with proofs and examples on the blackboard, with questions formulating to group; theory presented with connections of current knowledge. Tutorials: solving on board example tasks, initiating disscussion of solutions.

Bibliography

Basic

- 1. N. Koblitz, Wykład z teorii liczb i kryptografii, WNT, Warszawa 1995
- 2. W. Marzantowicz, P. Zarzycki, Elementarna teoria liczb, PWN Warszawa 2006
- 3. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Kryptografia stosowana, WNT, Warszawa 2005 Additional
- 1. W. Narkiewicz, Teoria liczb, PWN Warszawa 2003
- 2.W. Sierpiński, Teoria liczb, MM tom 19, IM PAN, Warszawa 1950
- 3. D.R. Stinson, kryptografia w teorii i w praktyce, WNT, Warszawa 2005

Breakdown of average student's workload

	Hours	ECTS
Total workload	100	4,00
Classes requiring direct contact with the teacher	45	2,00
Student's own work (literature studies, preparation for laboratory classes/tutorials, preparation for tests/exam, project preparation)	55	2,00